Please scroll down to get to the study materials.

- Note
- Things to remember

Consider two charged capacitors of capacitance C_{1} and C_{2} having potentials V_{1} and V_{2} respectively as shown in the figure. Then, initially the charge on capacitor C_{1} is Q_{1} = C_{1}V_{1} and on the charge onC_{2}is Q_{2} = C_{2}V_{2}.

Suppose two capacitors are connected to each other with a wire with like charge at the same point. The capacitors will share with each other till they acquire a common potential V. Let Q_{1}' and Q_{2}' be the final charges on the respective capacitors. Then the final charge on C_{1},

$$Q_1 = C_1V \dots (i)$$

and the final charge onC_{2},

$$Q_2 = C_2V \dots (ii)$$

Since the charged is conserved, the initial total charge of the two capacitors is equal to their final charge. So,

$$\text {or,} Q_1 + Q_2 = Q_1' + Q_2'$$

$$\text {or,} C_1V_1 + C_2V_2 = C_1V + C_2V$$

$$ \text {or,} V = \frac {C_1V_1 + C_2V_2 }{C_1 + C_2} \dots (iii)$$

This is the common potential obtained on combining the capacitors. The final charge stored in C_{1} and C_{2 }are

$$\text {or,} Q_1' = C_1\left (\frac {C_1V_1 + C_2V_2 }{C_1 + C_2} \right ) \dots (iv)$$

$$\text {or,} Q_2' = C_2\left (\frac {C_1V_1 + C_2V_2 }{C_1 + C_2} \right ) \dots (v)$$

Before connection, if Q be the total charge, then

$$\text {or,} Q = C_1V_1 + C_2V_2$$

Therefore, equation (iv) and (v) becomes

$$Q_1' = \frac {C_1}{C_1 +C_2}Q$$

$$Q_2' = \frac {C_2}{C_1 +C_2}Q$$

**Uses of Capacitors**

- Capacitors can be used as device for storing charge.
- They are used in scientific investigation.
- They are used in increasing the efficiency of alternating current power transmission.
- They give an electric field of desired configuration.
- The ignition system of any automobile engine contains a capacitor to eliminate the sparking of the points when they open or close.
- They are used in oscillators, in filter circuits, time delay device and many other electronic devices.

When a capacitor is fully charged it cannot accommodate furthermore charge. But when a dielectric medium is introduced between its plates, its molecules get polarized and hence enable the capacitor to accommodate more charge. This causes the capacitance of the capacitor to be increased. If ‘C

Consider a parallel plate capacitor each plate of area A and separated by a distance d apart. If ‘C_{o}’ represents the capacitance of a capacitor without any medium present between its plates and ‘C_{m}’ represents the capacitance when a dielectric material having dielectric constant ‘K’ is introduced then,

$$C_o = \frac {\epsilon_o A}{d}\dots (i)$$

$$C_m = \frac {\epsilon A}{d} =\frac {K \epsilon _o A}{d} \dots (ii)$$

Dividing equation (ii) by (i)

$$\frac {C_m}{C_o} = \frac {K \epsilon _o A}{d}\times\left (\frac {d} {\epsilon_o A} \right )$$

$$C_m = KC_o$$

As the dielectric constant K for any medium is greater than that of Vacuum or air, so

$$\boxed {C_m >C_o}$$

Hence, the action of dielectric on a capacitor is to increase in capacitance.

**Relative Permittivity (Dielectric constant)**

The ratio of the capacitance of a capacitor having a dielectric between the plates to the capacitance of the same capacitor without any dielectric is called the relative permittivity or dielectric constant of the material used. The relative permittivity of the substance is denoted by ε_{r}.

$$\epsilon_r = \frac {\text {capacitance of given capacitor with space between the plates fillled with dielectric}}{\text{capacitance of same capacitor with plates in vacuum}}$$

$$\text {or,} \frac {C_m}{C_o} $$

The capacitance of a parallel plate capacitor is $$$$

$$C_m = \frac {\epsilon A}{d}$$

If the medium between the plates in vacuum or air, then

$$C_o = \frac {\epsilon_o A}{d}$$

Then, \(\epsilon _r = \frac {C_m}{C_o} = \frac {\epsilon A/d}{\epsilon_o A/d} = \frac {\epsilon }{\epsilon _o}\)

$$ \boxed {\therefore\epsilon= \frac {\epsilon }{\epsilon _o}} $$

The relative permittivity or dielectric constant is the ratio of the permittivity of the substance to that of free space. It has no dimension and unit.

Capacitors can be used as device for storing charge.

Capacitors are used in oscillators, in filter circuits, time delay device and many other electronic devices.

When a capacitor is fully charged it cannot accommodate furthermore charge. But when a dielectric medium is introduced between its plates, its molecules get polarized and hence enable the capacitor to accommodate more charge.

The ratio of the capacitance of a capacitor having a dielectric between the plates to the capacitance of the same capacitor without any dielectric is called the relative permittivity or dielectric constant of the material used.

.-
## You scored /0

## ASK ANY QUESTION ON Sharing of Charges between two Capacitors and Dielectric

No discussion on this note yet. Be first to comment on this note