Let's take two expressions xy and yz. Here, xy is the product of x and y and yz is the product of y and z. x and y are factors of xy and y and z are the factors of yz. y is factor of both the expressions. So, y is called the highest common factor (HCF) of the expressions xy and yz.
\( \boxed {Note: HCF\:\text {divides each of the given expression exactly} } \)
Note: If there is no any common factor in the given expression, HCF = 1 as 1 is the factor of any number. |
Let's take two expressions a^{2}b - ab^{2}and a^{3}b - ab^{3}.Factorizing the expressions,
Here,
\begin{align*} first \: expression &= a^2 b - ab^2 \\ &= ab (a -b) \end{align*}
\begin{align*} second \: expression &= a^3 b - ab^3 \\ &=ab (a^2 - b^2) \\ &= ab(a + b) \: (a - b)\\ \end{align*}
common factors = ab(a - b)
Remaining factors = (a + b)
\begin{align*} LCM &= Common \: factors \times Remaining \: factor \\ &= ab(a - b) \times (a + b)\\ &= ab(a^2 - b^2).\end{align*}
.
x^{3}- x^{2}-x+1,x^{4}-2x^{3}+2x-1
X^{2}+3x-4,x^{3}-2x^{2}-x+2
(a+3)^{2}-9a-27,a^{5}-13a^{3}+36a
a^{2}-ab-2b^{2},a^{3}-a^{2}b-4ab^{2}+4b^{3}
x^{2}+5x+6,x^{2}+3x+2,x^{2}-4
x^{2}+7x+12,x^{2}+4x+3,x^{2}-9
x+3
x+1
x-1
x-3
3a^{2}-8a+4,2a^{2}-5a+2,a^{4}-8a
a-1
a+1
a+2
a-2
2a^{2}-5a+2,3a^{2}-8a+4,a^{4}-8a
m^{2}-7m+12, m^{3}--2m^{2}-2m-3
(m+3)(m-4)(m^{2}+m-1)
(m+3)(m-4)(m^{2}-m+1)
(m+3)(m-4)(m^{2}+m+1)
(m-3)(m-4)(m^{2}+m+1)
m^{2}+3m-4,m^{3}-2m^{2}-2m+3
t^{2}+5t+6,t^{2}-4,t^{2}+t-6
x^{3}+5x^{2}+6x,2x^{2}+14x+24,x^{2}+6x+8
The product of two expressions is (a+1)^{3}(a-1) and LCM is (a+1)^{2}(a-1).Find their HCF.
The product of two expressions is (a+1)^{3}(a-1) and LCM is (a+1)^{2}(a-1).Find their HCF.
The product of two expressions is a(b+c)^{2}(b-c) and HCF is (b+c).Find the LCM.
The HCF and LCM of two expressions are (a-b)and b(a-b)^{2}.Find the product of the expressions.
ASK ANY QUESTION ON Highest Common Factor and Lowest Common Factor Multiple
No discussion on this note yet. Be first to comment on this note