Practice Test | Kullabs.com
0%

15
14
12
13

3
2
-1
1

-1
2
1
-2

5
4
3
2
• ### If (overrightarrow a) and (overrightarrow b) are perpendicular to each other, find the value of m:(overrightarrow a) = -4(overrightarrow i) + 7(overrightarrow j) and  (overrightarrow b) = 14(overrightarrow i) - 3m(overrightarrow j)

(-frac{8}{3})
6
2
8

400
600
450
300

10
13
11
12
• ### The position vectors of points A and B of a line are (egin{pmatrix}1\3\ end{pmatrix}) and (egin{pmatrix}3\5\ end{pmatrix}) respectively.Find the position vector of mid point M of AB.

(egin{pmatrix}1\4\ end{pmatrix})
(egin{pmatrix}5\4\ end{pmatrix})
(egin{pmatrix}2\4\ end{pmatrix})
(egin{pmatrix}2\5\ end{pmatrix})
• ### If the position vectors of the points A and B are 3(overrightarrow i) + 4(overrightarrow j) and 5(overrightarrow i) - 2(overrightarrow j) respectively. Find the position vector of the mid-point M of AB.

4(overrightarrow i) + (overrightarrow j)
5(overrightarrow i) + (overrightarrow j)
3(overrightarrow i) + (overrightarrow j)
2(overrightarrow i) + 3(overrightarrow j)
• ### The position vector of P and Q are 2(overrightarrow i) + 7(overrightarrow j) and 4(overrightarrow i) - 3(overrightarrow j). Find the position vector of a point which divides PQ externally in the ratio of 2:3.

23(overrightarrow j) - 2(overrightarrow i)
27(overrightarrow j) - 2(overrightarrow i)
29(overrightarrow j) - (overrightarrow i)
25(overrightarrow j) - (overrightarrow i)
• ### If the points X(-1, -1), Y(5, 1) and Z(2, 6) are the vertices of triangle XYZ, find the position vector of its centriod.

(egin{pmatrix}1\2\ end{pmatrix})
(egin{pmatrix}2\2\ end{pmatrix})
(egin{pmatrix}2\1\ end{pmatrix})
(egin{pmatrix}2\3\ end{pmatrix})
• ### Find the position vector of a point in the x-axis which divides the line joining the points (2, -1) and (8, 2) in the ratio 1:2.

(egin{pmatrix}2\4\ end{pmatrix})
(egin{pmatrix}4\0\ end{pmatrix})
(egin{pmatrix}2\2\ end{pmatrix})
(egin{pmatrix}4\2\ end{pmatrix})

13
15
14
12

-2
-3
-4
-5

five
zero
eight
two