Practice Test | Kullabs.com
0%
• ### Find the transformation represented by the matrix egin{pmatrix} 1 & 0 \ 0 & -1 \ end{pmatrix}

Reflection in X-axis
-2
-11
Reflection in Y-axis
• ### Which Transformation is represented by the matrix egin{pmatrix} 1 & 0 \ 0 & -1 \ end{pmatrix} ? Find the image A ( 2 , -5) using this matrix .

A' (2 , 5)
Reflection in X-axis A' (0 , -1)
Reflection in X-axis A' (-2 , -5)
Reflection in X-axis A' (2 , 5)
• ### What transformation does the matrix egin{pmatrix}  0 & -1 \ -1 & 0  \ end{pmatrix} denote ? Using the given matrix , find the image of the point A (5 , -7)

reflection in y = x , (7 , 5)
reflection in x = y , (6 , 3)
reflection in y = -x , (7 , -5)
reflection in y = x , (3 , 4)
• ### What transformation does the matrix egin{pmatrix} 0 & -1 \ -1 & 0 \ end{pmatrix} denote ? Using the given matrix , find the image of the point .

reflection in y = X , (6 , 5)
reflection in y = -x , (-5 , -8)
reflection in y = -x , (0 , -1)
reflection in y = x , (5 , 8)
• ### Which transformation isrepresented by the matrix egin{pmatrix} 0 & -1 \ -1 & 0 \ end{pmatrix}  Find the image (5 , -7) using this matrix.

reflection in y = y ; (-7 , 4)
reflection in y = -x ; (-4 , 1)
reflection in y = -x ; (7 , -5)
reflection in y = x ; (-7 , 5)
• ### What transformation does the matrix egin{pmatrix} 0 & -1 \ -1 & 0 \ end{pmatrix} denote ? Using the given matrix , find the image of the point (-3 , 2).

reflection in y = y ; (-4 , 2)
reflection in y = -x ; (-2 , 3)
(-2 , 3)
reflection in y = -x ; (-1, 2)
• ### Find the 2 ( imes) 2 matrix which transforms A(-3 , 1) to A(3 , 1).

egin{pmatrix} 2 & 1 \ 1 & 1 \  end{pmatrix}
egin{pmatrix} -1 & 0 \ 0 & 1 \  end{pmatrix}
egin{pmatrix} 0 & 0 \ 0 & -1 \  end{pmatrix}
egin{pmatrix} -1 & -2 \ 9 & 1 \  end{pmatrix}
• ### If a point (x , y) is transformed into (y , x) by a 2 ( imes) 2 transformation matrix , then find the matrix .

egin{pmatrix} 0 & -4 \ 0 & -1 \ end{pmatrix}
egin{pmatrix} 0 & 0 \ 5 & 8 \ end{pmatrix}
egin{pmatrix} 0 & -2 \ 0 & -2 \ end{pmatrix}
egin{pmatrix} 0 & 1 \ 1 & 0 \ end{pmatrix}
• ### If a point (a , b) is transformed into ( b ,-a) by a 2 ( imes) 2 transformation matrix , find the matrix .

egin{pmatrix} 0 & -1 \ 1 & 0 \ end{pmatrix}
egin{pmatrix} 1 & 1 \ -1 & 1 \ end{pmatrix}
egin{pmatrix} 0 & 1 \ -1 & 0 \ end{pmatrix}
egin{pmatrix} 1 & 1 \ 0 & 0 \ end{pmatrix}
• ### Find the transformation matrix which represents the reflection on the line y = x.

egin{pmatrix} 0 & 1 \ 1 & 0 \ end{pmatrix}
;i:3;s:84:
;i:2;s:84:
;i:4;s:83:
• ### The square WXYZ has the vertices W (0 , 30 , X(1 , 1) , Y(3 , 2) and Z(2 ,4). Transform the given square WXYZ under the matrix egin{bmatrix} 0 & 1 \ -1 & 0 \ end{bmatrix}.

W' (3 , 0) , X'(-1 , 0) , Y'(2 , -3) , Z'(4 , 2)
W' (-3 , 3) , X'(-1 , -1) , Y'(-2 , -2) , Z'(-4 , 4)
W' (1 , 0) , X'(-1 , -1) , Y'(-2 , 1) , Z'(-4 , 1)
W' (-3 , 0) , X'(-1 , -1) , Y'(-2 , -3) , Z'(-4 , -2)
• ### A unit square MNOP having vertices M (0 , 0) , N(1 , 0) , O(1 , 1) , P(0 , 1) is transformed under the matrix transformation through y = -x and write the vertices of the image and write the vertices of the images quadrilateral MNOP so formed.

M(0,0)  , N(0 , -1) , O(-1 , -1) , P(-1 , 0)
M(0,0)  , N(0 , 1) , O(1 , 1) , P(2 , -2)
M(1,0)  , N(0 , 1) , O(-1 , 1) , P(1 , 1)
M(0,1)  , N(0 , 3) , O(-1 , 2) , P(-1 , 1)
• ### Find a matrix which transforms a unit square egin{pmatrix} 0 & 1 & 1 & 0 \ 0 & 0 & 1 & 1 \ end{pmatrix} to a parallelogram  egin{pmatrix} 0 & 4 &5 & 1 \ 0 & 1 & 2 & 1 \ end{pmatrix}

egin{pmatrix} 4 & 1 \ 1 & 1 \ end{pmatrix}
egin{pmatrix} -1 & 0 \ 5 & 2 \ end{pmatrix}
egin{pmatrix} 7 & 1 \ 3 & 2 \ end{pmatrix}
egin{pmatrix} 4 & 0 \ 0 & 0 \ end{pmatrix}
• ### Find the 2 ( imes) 2 matrix , that transforms the unit square  egin{bmatrix} 0 &1 &1 &0 \ 0 &0 &1 &1 \ end{bmatrix} to a parallelogram egin{bmatrix} 0 &3 &5 &2 \ 0 &1 &2 &1 \ end{bmatrix}

egin{pmatrix} 0 & 3 \ 7 & 4 \ end{pmatrix}
egin{pmatrix} 2 & 1 \ 1 & 0 \ end{pmatrix}
egin{pmatrix} 3 & 2 \ 1 & 1 \ end{pmatrix}
egin{pmatrix} 3 & 1 \ 1 & 2 \ end{pmatrix}

(3 , -2)
(2 , 4)
(3 , 2)
(3 , 1)