If r_{1} represents the reflection on X-axis and r_{2} represents the reflection on y-axis then translate the point (3 -2) by r_{1} or r_{2 }.
If r_{1} represents the reflection on X-axis and r_{2} represents the reflection on y-axis then find the image of the point (1 , 5) under the combined transformation r_{1}.r_{2 . }
If F be the reflection on line y = x and G be the reflection on line x = 0 then state what does G_{o}F represents? If a point P is transformed by the above single transformation to P '(-2 , 3) , find the co-ordinates of point 'P'.
R_{1} and R_{2} denote the reflections on x = -y and x = 4 respectively. What point would have the image (2 , -5) under the combined R_{1} or R_{2 }?
Point (4 , -3) is reflected in the line x = 0 at first and then the image s formed is reflected in the line y = k so that the final image (-4 , 9) is obtained. Find the value of k.
Point (8 , 10) is reflected in th line x = 0 at first and then image so formed is reflected in the line y - m = 0 so that the final image (-8 , 6) is obtained. Find the value of m.
The vertices of ΔABC are A (2,1) , B(-1 , 4) and C (-2 , -2). Find the co-ordinates of the vertices of the image of ΔABC under the transformation of T_{1} or T_{2} where T_{1} = ( (frac{1}{2}) ) and T_{2 =} ( (frac{-3}{1}) )
Point (3 , 2) is reflected on the line y =x . The image so obtained is rotated about O through +90(^o). Find the coordinates of the image.
Find the coordinates of the image of the point (-5 , 7) , when it is first reflected on the line y = -x and then the image so formed is rotated about the origin O through an angle of +180(^o).
Determine the coordinates of the image of a point (3 , 7) when it is first reflected on the Y-axis and then rotated through an angle +90(^o) about the origin. Also write down a single transformation which denotes both of these transformation.
The image formed by reflecting the point (3 , 4) n the Y-axis is rotated about origin O(0 , 0) thrpugh +90(^o) , find the coordinates of this image.
A point A(-2 , 3) is reflected on Y-axis and the image so obtained is rotated about origin through -90(^0). Find the coordinates of final image.
A point A(-2 , 3) is reflected on Y-axis and the image so obtained is rotated about origin through -90(^0). Find the coordinates of final image.
Point (4,5) is rotated about the origin O through + 90(^0) and the image so obtained is reflected on the Y-axis. Find the coordinates of the image.
Find the coordinates of the image of a point (4,5) when it is first rotated by +90 (^0) about the origin 0 and then reflected on the X-axis. Also write down the single transformation which represents both of these two transformations.
Find the coordinates of the image of a point (3 , 20 when it is first rotated by + 180^{0 }about the origin O and then reflected in the Y-axis.